

POWER ELECTRONICS I

AC-DC Converters

Three-Phase Rectifiers

Dr. Islam Mohamed

Electrical Engineering Department Shoubra Faculty of Engineering, Benha University

Islam.ahmed@fen.bu.edu.eg

Questions Lecture 3

- Q_1) what are the rating values of the Diodes in the converter?
- Q₂) Calculate the rectification efficiency for R and highly inductive loads.
- Q₃) what happen to the load voltage and current waveforms if a freewheeling diode is connected incase RL-loads?
- Q₄) what happen to the load voltage and current waveforms if a freewheeling diode is connected incase RL-loads?

Three-phase rectifier Plan

Lecture Four: Three-phase Full wave Controlled rectifiers circuits

Construction

- Circuit diagram
- Components

Operation

- Output waveforms
- R-load and Highly inductive load

Analysis

- Analysis of the circuit with R-load
- Analysis of the circuit with highly inductive load

End

- Summery
- Questions

Construction

Power circuit and its components

- 1- Two Thyristors must be forward at any instant (T_1, T_3, T_5) with (T_2, T_4, T_6)
- 2- Line voltage will be applied to the load at any instant.
- A transition of the highest line-to-line voltage must take place every $360^{\circ}/6 = 60^{\circ}$

Construction

Power circuit and its components

- ➤ The three thyristors (T₁,T₃ andT₅) will not work together at the same time or two of them also will not work together at the same time.
- ➤ The three thyristors (T₂,T₄ andT₆) will not work together at the same time or two of them also will not work together at the same time.
- \succ (T₁ and T₄), (T₃ and T₆) or (T₅ and T₂) will not work together at the same time.
- Each thyristor is triggered at an interval of $2\pi/3$.
- Each thyristors pair $((T_6\&T_1), (T_1\&T_2), (T_2\&T_3), (T_3\&T_4), (T_4\&T_5), (T_5\&T_6))$ is triggered at an interval of $\pi/3$.
- The frequency of output ripple voltage is 6f_S.

Construction

Firing schemes

Firing Angle	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆
0°	30°	90	150°	210	270°	330
30°	60°	120°	180°	240°	300°	360°
60°	90°	150°	210°	270°	330°	390°
90°	120°	180°	240°	300°	360°	420°

- Thyristors are numbered in the order in which they are triggered.
- The thyristor triggering sequence is 12, 23, 34, 45, 56, 61, 12, 23, 34,

- \succ T₁ is triggered at $\omega t = (30 + \alpha)$, T₆ is already conducting when T₁ is turned ON.
- Puring the interval (30 + α) to (90 + α), T_1 and T_6 conduct together & the output load voltage is equal to $v_o = v_{ab} = (v_{an} v_{bn})$.
- \succ T₂ is triggered at ωt = (90 + α), T₆ turns off naturally as it is reverse biased as soon as T₂ is triggered. During the interval (90 + α) to (150 + α), T₁ and T₂ conduct together & the output load voltage $v_o = v_{ac} = (v_{an} v_{cn})$.
- \succ T₃ is triggered at ωt = (150 + α), T₁ turns off naturally as it is reverse biased as soon as T₃ is triggered. During the interval (150 + α) to (210 + α), T₂ and T₃ conduct together & the output load voltage $v_o = v_{bc} = (v_{bn} v_{cn})$.
- \succ T₄ is triggered at ωt = (210 + α), T₂ turns off naturally as it is reverse biased as soon as T₄ is triggered. During the interval (210 + α) to (270 + α), T₃ and T₄ conduct together & the output load voltage $v_o = v_{ba} = (v_{bn} v_{an})$.
- \succ T₅ is triggered at ωt = (270 + α), T₃ turns off naturally as it is reverse biased as soon as T₅ is triggered. During the interval (270 + α) to (230 + α), T₄ and T₅ conduct together & the output load voltage $v_o = v_{ca} = (v_{cn} v_{an})$.
- \succ T₆ is triggered at ωt = (330 + α), T₄ turns off naturally as it is reverse biased as soon as T₆ is triggered. During the interval (330 + α) to (390 + α), T₅ and T₆ conduct together & the output load voltage $v_o = v_{cb} = (v_{cn} v_{bn})$.

Output Voltage waveforms for R& RL loads

Output Voltage waveforms for R& RL loads

Output Voltage waveforms

Output Voltage waveforms for RL-loads

What about output Voltage waveforms for R-loads after

 $\alpha > 120$

Currents waveforms

1- Supply voltages:

$$V_{ab}$$
 (ωt)= V_{ml} sin(ωt + π /6), V_{bc} (ωt)= V_{ml} sin(ωt - π /2), V_{ca} (ωt)= V_{ml} sin(ωt - π /6)

$$\alpha \le 60$$

 $\alpha \le 60$ for R & RL loads:

2- Output average voltage

$$V_{o,avg} = \frac{3}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \sqrt{3} V_m \sin(\omega t + \frac{\pi}{6}) d\omega t = \frac{3\sqrt{3}V_m}{\pi} \cos \alpha$$

3- Output rms voltage for R & RL loads:

$$V_{o,rms} = \sqrt{\frac{3}{\pi}} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \left(\sqrt{3} V_m \sin(\omega t + \frac{\pi}{6}) \right)^2 d\omega t = \sqrt{3} V_m \sqrt{\frac{1}{2} + \frac{3\sqrt{3}}{4\pi} \cos 2\alpha}$$

4- Average load current For R & RL-Loads

For both cases:
$$I_{o,avg} = \frac{Vo,avg}{R}$$

5- RMS Load current

For Resistive load:
$$I_{o,rms} = V_{o,rms}/R$$

For Highly inductive load:

$$I_o, rms = I_{o,avg}$$

for R-loads:

$$60 < \alpha < 120$$

for RL-loads:

$$60 < \alpha < 180$$

$$V_{o,avg} = \frac{3}{\pi} \int_{\pi}^{5\pi/6} \sqrt{3} V_m \sin(\omega t + \frac{\pi}{6}) d\omega t = \frac{3\sqrt{3}V_m}{\pi} \cos(\frac{\pi}{3} + \alpha)$$

$$V_{o,rms} = \sqrt{\frac{3}{\pi}} \int_{\frac{\pi}{\epsilon} + \alpha}^{5\pi/6} \left(\sqrt{3}V_m \sin(\omega t + \frac{\pi}{6})\right)^2 d\omega t$$

$$V_{o,rms} = \sqrt{\frac{3}{\pi}} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \left(\sqrt{3}V_m \sin(\omega t + \frac{\pi}{6})\right)^2 d\omega t} = \sqrt{3}V_m \sqrt{\frac{1}{2} + \frac{3\sqrt{3}}{4\pi} \cos 2\alpha}$$

$$60 < \alpha$$

For both cases:
$$I_{o\ avg} = \frac{Vo,avg}{R}$$

5- RMS Load current

For Resistive load:
$$I_{o,rms} = V_{o,rms}/R$$

$$For F$$

$$= V_{o'} x$$

$$I_{o'} rms$$

For Highly inductive load:

$$I_{o'rms} = I_{o,avg}$$

6- Thyristor currents

• Each thyristor conducts one-third of the time, resulting in

$$I_{T,avg} = \frac{1}{3}I_{o,avg}$$

$$I_{T,rms} = \frac{1}{\sqrt{3}} I_{o,rms}$$

7- RMS supply current

$$egin{aligned} \dot{i}_a &= i_{T1} - i_{T4} \ i_b &= i_{T3} - i_{T6} \ i_c &= i_{T5} - i_{T2} \end{aligned}$$

$$I_{S,rms} = \sqrt{\frac{2}{3}} I_{o,rms}$$

$$P_{s} = P_{o} = I_{o,rms}^{2} R$$

For R & RL Loads??

9- Input power factor

$$pf = \frac{P_o}{S} = \frac{I_{o,rms}^2 R}{3V_s I_{s,rms}}$$

Remember Is $_{\rm rms} = \sqrt{2/3}I_{\rm o,rms}$

10- Converter efficiency

$$\eta = \frac{P_{dc}}{P_{o,rms}} = \frac{V_{o,avg} I_{o,avg}}{V_{o,rms} I_{o,rms}}$$

Questions

- Q_1) what are the rating values of the Thyrisors in the converter?
- Q₂) Draw a relation between the rectification efficiency and firing angles for R-load and highly inductive loads.
- Q₃) Draw a relation between the average output voltage and firing angles for R-load and highly inductive loads.
- Q₄) Draw the load voltage and current waveforms if a freewheeling diode is connected incase RL-loads.
- Q_5) Draw the load voltage and current waveforms at for RL-loads if T2, T4, T6 are replaced with diodes At $\alpha = 30,60,90$